Biomechanical Comparison of Rigid vs. Semi-Rigid Rods in Spinal Fusion Constructs

Missoum Moumene PhD*
Payman Afshari PhD*

*DePuy Spine, R&D
Raynham, MA - USA

EuroSpine 2011
Milan, Italy – October 19-21, 2011
Limitation of Rigid Fixation

- Potential factors leading to pseudoarthrosis
 - Stress shielding of interbody
 - Inability to “close the gap” caused by:
 - Endplate resorption
 - Undersized interbody

Evident by radiolucent “halos” on fluoroscopy and MRI
• Applied forces are transmitted through the rigid construct if no fusion occurs

This may result in:

- Screw breakage
- Rod breakage
- Rod slippage
- Screw loosening
Hypothesis

- Semi-rigid rod may share load with anterior column support thus:
 - Promoting Fusion (Wolff’s law)
 - Protect instrumentation from failure
 - Reducing Loads on screw-bone interface
Rigid & Semi-Rigid Rods (5.5mm)

- Ti (Rigid)
- PEEK (Semi-Rigid)

110 Modulus (GPa) 4
Methods: FE-Model of L1-S1

- **Muscle Load**
- **Compression Load**
- **Moment Load**
FE-Model Validation

Change in Segmental Angle:

- L1-2
- L2-3
- L3-4
- L4-5
- L5-S1

0° 1° 2°

- FE-Model
- *In-vivo*

In-vivo (50 volunteers)

Wood et Al J. Spine Disorder 1996

400N Upper Thoracic

Missouri Movement, Ph.D.
Fusion Construct (Load Sharing Calculation)

Upper Thoracic Load 400N

Anterior load

Posterior load

Pressure

Missoum Moumen, PhD
Load Sharing
Titanium vs. PEEK Rods

Anterior

Posterior

Loading (%)

Ti 5.5

PEEK 5.5
Screw Loading
Titanium vs. PEEK Rods

Flexion

<table>
<thead>
<tr>
<th>Bending Moment (Nm)</th>
<th>Ti 5.5</th>
<th>PEEK 5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

Extension

<table>
<thead>
<tr>
<th>Bending Moment (Nm)</th>
<th>Ti 5.5</th>
<th>PEEK 5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>
Stabilization
Titanium vs. PEEK Rods
Testing Protocol

- L4 Laminectomy + 25% Facetectomy
- 7.5 Nm: FE, AR, LB while under muscle load
- Compare PEEK and Ti
 - PLIF approach
 - PLF approach
Testing Models

Intact

Instable

PLIF

Ti & PEEK Rods
FEA Results

Stabilization (PLIF)

No significant difference in ROM between PEEK and Ti rods
Summary

• PEEK rod provides better load sharing than Ti rod in a fusion construct
 - Accelerates fusion (Wolff’s law)
 - Reduces load on posterior inst.

• PEEK rod reduces the load on the screw-bone interface
 - Ideal for fusion in aging spine and osteoporotic bone
Summary Cont.

- No difference between PEEK and Ti rods for stabilization of spine in fusion construct
Authors Disclosure Information

Presenter: Missoum Moumene (a,b) DePuy Spine

Co-Author: Payman Afshari (a,b) DePuy Spine

a. Employee
b. Stock/Shareholder
Thank you